skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dixit, Gaurav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In many real-world multiagent systems, agents must learn diverse tasks and coordinate with other agents. This paper introduces a method to allow heterogeneous agents to specialize and only learn complementary divergent behaviors needed for coordination in a shared environment. We use a hierarchical decomposition of diversity search and fitness optimization to allow agents to speciate and learn diverse temporally extended actions. Within an agent population, diversity in niches is favored. Agents within a niche compete for optimizing the higher level coordination task. Experimental results in a multiagent rover exploration task demonstrate the diversity of acquired agent behavior that promotes coordination. 
    more » « less
  2. In multiagent problems that require complex joint actions, reward shaping methods yield good behavior by incentivizing the agents’ potentially valuable actions. However, reward shaping often requires access to the functional form of the reward function and the global state of the system. In this work, we introduce the Exploratory Gaussian Reward (EGR), a new reward model that creates optimistic stepping stone rewards linking the agents potentially good actions to the desired joint action. EGR models the system reward as a Gaussian Process to leverage the inherent uncertainty in reward estimates that push agents to explore unobserved state space. In the tightly coupled rover coordination problem, we show that EGR significantly outperforms a neural network approximation baseline and is comparable to the system with access to the functional form of the global reward. Finally, we demonstrate how EGR improves performance over other reward shaping methods by forcing agents to explore and escape local optima. 
    more » « less